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The Space Technology 5 (ST5) mission is a NASA New Millennium Program (NMP) 
project that was developed to validate new technologies for future missions and to 
demonstrate the feasibility of building and launching multiple, miniature spacecraft that can 
operate as science probes, collecting research quality measurements. The three satellites in 
the ST5 constellation will be launched into a sun synchronous LEO (Low Earth Orbit) in 
early 2006. ST5 fits in the 25 kilogram and 24 Watt class of miniature but fully capable 
spacecraft. The power system design features the use of new technology components and a 
low voltage power bus. In order to hold the mass and volume low and to qualify new 
technologies for future use in space, high efficiency triple junction solar cells and a lithium 
ion battery were baselined into the design. The Power System Electronics (PSE) was 
designed for a high radiation environment and uses hybrid microcircuits for power 
switching and over current protection. The ST5 power system architecture and technologies 
will be presented. 

I. Introduction 
HE goal ofNASA's Space Technology 5 (ST5) mission include qualifying multiple new technologies for future 

T u s e  in space, building a miniature but full service spacecraft, taking localized magnetic field measurements for 
mapping purposes, and operating as a constellation of satellites. The New Millennium Program offers a unique 
opportunity to validate new technology components for fbture space flight use. The small, low cost Space ' 
Technology 5 (ST5) platform provides a means by which these new technologies can gain flight qualification and 
flight heiitage status without posing a risk to higher cost science missions. The new technologies that have been 
space qualified for ST5 are the lithium ion battery, triple junction solar cells, X-band digital transponder, miniature 
spinning sun sensor, cold gas micro thruster, CULPRiT (CMOS Ultra Low Power Radiation Tolerant) logic, X-band 
evolved antenna, thermal variable emittance coatings and miniature science grade magnetometer. 

Another goal of the ST5 mission is to produce a miniature but fully capable scientific spacecraft. ST5 is 
considered the first step in a goal towards a M e r  reduction in size to a nanosat-sized platform that may be used on 
future missions. Such missions would deploy multiple miniature spacecraft as science probes to conduct localized 
measurements on orbit. In order to meet these goals, the volume, mass and power of all components had to shrink 
significantly. 

The ST5 mission is also tasked with operating multiple spacecraft as a constellation. This includes flight 
operations as well as developing and testing three spacecraft at once, sharing and juggling the resources of the same 
team members and test equipment as well as gaining valuable experience managing efficiencies in the scheduling 
and budgeting of numerous parallel builds. The lessons learned from this program will be applied to future 
constellation missions. 

11. ST5 Spacecraft Overview 
The ST5 design emphasizes simplicity and reduction in scale. In order to simplify the guidance and navigation, 

the spacecraft was designed to be spin stabilized. The structure is octagonal, with 8 body-mounted solar panels. 
The top and bottom decks are removable to allow for assembly, integration and testing of the tightly packed 
components. The avionics on each satellite are combined into one unit. The Control and Data Handling unit 
(C&DH) is housed on a very densely populated double-sided card with approximately 2000 parts per side. The 
Power System Electronics (PSE) is located in the same enclosure with its interface with the C&DH being their 
common backplane. This combined avionics box is called the Card Cage Assembly (CCA) as it also functions as the 
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main structural element for the spacecraft. The CCA is responsible for processing all signals and power to and fiom 
each component on the Spacecraft, and is, in essence, both the heart and brain of the craft. In order to meet the 
stringent magnetic field requirements, extra care was taken to minimize current loops and the CCA card layouts 
were scrutinized for such. Power and signals fiom the CCA to each component were combined in one connector per 
component in order to direct currents to return back to the source in the same harness bundle. The electrical 
isolation of the components was controlled in order to minimize ground currents in the metal structure. 

Figure 1. Space View of the ST5 spacecraft 

ST5’s other new technology components include: a single-card Command and Data Handling (C&DHJ 
computer, a miniature communications system featuring an X-band transponder, a cold gas propulsion system using 
a single micro-thruster for both deb-V and attitude control, a miniature magnetometer, a miniature spinning sun 
sensor, and a “plug -and-play” ground system architecture. One of the new technology components is a miniature 
transponder that offers a substantial decrease in weight, power, and volume over current operational systems. Two 
different types of antennas are being developed for ST5: a quadrifilar helix antenna and an “evolved” antenna 
designed with genetic algorithms. A single cold-gas micro-thruster provides all ST5 orbit and attitude maneuver 
capability. A miniature digital sun sensor is used to measure the elevation angle of the sun with respect to the ST-5 
spin axis, 

III. ST5 Power System _ _  Design - - - __ - 
.. __ _ _  

There are a number of challenges imposed by the ST5 mission. Specifically, designing a nanosat class 
spacecraft demands that minimizing mass, volume and power dissipation drive the design. The result is a very 
streamlined approach, while striving to maintain a high level of capability. The tough radiation requirements, along 
with the low voltage bus, limit the parts selection of analog parts that operate within these constraints. The 
challenge of qualifying ney  technology components for the space environment in a short development schedule is 
another hurdle. The mission requirements also demand magnetic cleanliness in order to reduce the effect of stray 
magnetic fields on the science grade magnetometer. 

The ST5 power system design features the use of new technology power system components while being 
constrained by the resources of mass, power and volume. In order to hold the mass and volume low and to qualify 
new techrzologies for future use in space, high efficiency triple junction solar cells and a lithium ion battery were 
designed into the system. These high efficiency (28.5%) triple junction solar cells and the 7.5 Amp-hour Lithium- 
Ion battery help to keep the mass of the system low while maximizing available power. 

The main functions of the power system are to convert solar energy with the eight solar array panels, store any 
excess solar energy in the lithium-ion battery, draw stored energy fiom the battery when needed, and provide 
switched power outputs (with odoff  control) to the S/C subsystems. Some of the key elements of the power system 
architecture are the low voltage busses (+5.25V regulated and +7.2 f 1.2V unregulated) along with components that 
achieve very low power consumption and dissipation. The low voltage busses were selected in order to minimize 
conversion and regulation losses. Since most of the spacecraft electronics (about 90%) are digital and operate from 
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an inpct yoltagc d + W ,  and since rke Components ars itl ciose proximy (iess 1h3n 12 imAes;, a 1-5 Voir p w e r  iz~s 
was chosen. A higher voltage b-us (+7.2 Vrt I.2V) was added €or corrponents that cm improve efficiency whez 
Gperated f:o= a higher voItage (transponder high power amplifier) or for noisier components that rguirc f3ters azd 

Figure 2. Photo of first spacecraft prior lo close out wsrk and start e€ environmental testing. 

The XT5 power syskm is a direct energy transfer @ET) tapology, battery bus design. This architecture was 
chosen for this miniature spacecraft because OP its simpEeity rtnd small parts count. We tried tu eliminate any 
extraneous park in order to minim3ze dissipation and improve efficiency. Every diode drop in this low voltage bus 
design represented a potentid loss of a large percentage of the nomid bus voltage compared to that for a 28V 
system. For instance, a radiation hardened diode with a forward voltage drop of 0.38V repfesents 5% of our low 
voItage bus wnpared te 1% of a 28V bus. Therehe, the use and selection of each part in the primary power path 
were scrutinized. 

N. Pwver System Eleehonics 
To me& the gods of producing a miniature power system and improving Its efficiency, some functions of the 

Power System Ekxt rdcs  (PSE) were combined and streamlined. Combining the solar array regulator and battery 
charger Into one hw drop out voltage regulator also resulted in increasing reliabiljty by minimizing the number of 
parts in the main power path. The dual role of this circuitry is performed by a pulse width moduMed boost 
converter which regulates to a fmed voltage clamp when the battery is charged. The voltage clamp is set for the 
optbum end-of-charge voltage of the lithim-ion battery and provides overcharge protection. Battery over- 
discharge protection is provided by the flight software resident in the spacecraft computer. Analog battery health 
and status signals are digitized and monitored by the flight software. If the battery falls below a predetermined 
depth of discharge or volfage, a fight software load shedding algorithm is initiated to reduce demand on the battery. 

As described previously, the PSE maintains an unregulated +7.2 f 1.2V primary power bus during battery 
charging and a regulated t5.25V secondary power bus. These two low volfage busses are shown in the simplified 
power system b b k  diagram (Figure 3). Power distriiution is accomplished with 10 digitally commandable and 
resetable solid state power switches. Each power switch has a digital command and status interface as we11 as an 
over-current protection circuit integrated into a small. package. A circuit breaker h c t i o n  is activated when an over- 
current condition is sensed. The current level €or the over-current trip hiiction is adjustable for each load and is 
fixed prior to launch. The default state of a- switch (after initial start-up) c m  be either an or off. Status bits indicate 
whether the switch has tripped due to over current and what state the switch has been commanded to This hybrld 
nlicrocircuit is a custom Goddard design and has passed flight qualification testing. 

As shown in Fig. 3, there are five switchable c7.2V unregulated outputs. The +7.2V power to the transponder‘s 
X-band uplink receiver is unswitched; it is always pOwered-011 when the spacecraft is powered-on. A DC-to-DC 
converter provides regulafed i-5.0V power to the flight compufer (C&DH board). The +5.W power to the C&DH is 
always on, but it can be momentarily power cycled by a ground-to-transponder “special command” if necessary. At 
the bottom a€ the figure are the four switchable +5.25V regulated outputs. All of the PSE board’s solid-state power 
switches are controlled by the C&DH processor via readmite transactions over the backplane’s local 1.6-bit parallel 
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data bus. Some other functions of the power system electronics include analog signal processing. Signals from 
voltage, current and temperature sensors are processed and multiplexed for power system health and status 
monitoring. 

The PSE provides a dedicated switching converter for the C&DH +5V service. Initially, a commercial off-the- 
shelf switching converter was chosen for this purpose whose input voltage range was low enough to support a 
possible 6-8V allowable span. However, this package was susceptible to radiation and was noisy even with added 
filtering, so a discrete design was produced. Although the discrete converter requires more board space, it is over 
90% efficient, radiation-tolerant to over 100 kads total dose, immune to major single event effects and achieves a 
low noise output. The design tradeoff in this case was to choose the improvement in performance at the cost of a bit 
more board space. 

Early in the design phase, some of the tough challenges involved finding analog parts that could meet the 100 
krad total dose radiation requirement in addition to the low supply voltage of 5V. For example, most of the analog- 
to-digital (ND) converters and op amps that could operate fiom the low supply voltage of 5V were not sufficiently 
radiation hardened. We were not able to use the majority of parts fiom other missions due to the low voltage 
requirement for these analog parts. Eventually, we gathered enough data fiom radiation testing and breadboard 
experience to select analog parts that could operate well fiom the low voltage and meet the performance 
requirements during the anticipated radiation exposure. 

Having initially been designed as a secondary payload, the ST5 spacecraft was designed to be powered off 
during launch and ascent. Upon separation fi-om the launch vehicle, a power system enable switch will close and the 
spacecraft will tum on. For integration and test (I&T) purposes there is a battery off-line switch that prevents even 
small amounts of leakage fiom the battery when the SIC is powered off for extended periods of time. Also for I&T, 
the PSE has an externally accessible connector for supplying ground power, charging the battery, and directly 
measuring the power system’s health and status signals. 

Off-Line 
Switch 

(IbT only) 

Battery 

L1-lon E 

Special Command (C&DH Power Cycle) 

r 

+7.N Power 

from 
Solar Array 

via 
SIA Regulator 
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Figure 3. Simplified Distribution Diagram of the ST5 Power System Electronics 
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Figure 4. Power System Electrodes (PSE) Card 

Reducing themass, v o h e  md power c0nswnptioz.1 of the power system was a fundamental design goal €or this 
system. The entire B E  board mass is approximately- 2.1 kg, ineluding all eard stiffkners, its alumimun core and 
heatsink. There is some mass penaIty inherited by the PSE owing to the fact that this card is used as a structural 
element for the sj~acecrrtft. The PSE could have been packaged in a smaller and lighter weight fashion, however the 
system €eve1 mas savkgs gained by the multiple functions outweighed that option. Figure 4 is a photograph of the 
A side of the PSE board assemb1y. The total power consumption of the card is about 0.9 watts, including all 
regu€ators and converters. The entire PSE dissipates between 1.9 and 2.6 Watts, depending on the spacecraft load 
and state of charge of the battery. 

v. SalarArrays 
The ST5 sola m a y  is comprised of eight body-mounted panels. 

The solar c&s are triple-junction GaAs (InGaP/InGaAs/Ge) cells and 
have an average ceft efficiency of 28.5%, with a maximum efficiency 
greater than 29%. At beginning of life, power generation by the solar 
array will be just over 26 watts. Emcore fabricated the cells, then 
assembled and tested the panels. The solar panels were designed to be 
identical, thus enabling spare panels to substitute at any panel location. 
This also made &e fabrication simpler and reduced the risk of errors 
during the development and integration stages. Temperature sensors 
are monitored on two of the eight panels. 

The strict magnetic cleanliness requirement was tackled by 
mirroring the eurrent in the solar cell strings with a similar ground 
path underneath. This was accomplished by providing the return 
current a path composed of a flat wire mesh that was instal€ed on the 
front side of the panel substrates before the cell strings are laid down. 
This method was found to have better performance than conventional 
backwiring with a modest cost impact. 

Due to growth in the power load demand of the spacecraft, in 
addition to the Eimited solar panel area available around the sides of a 
small vehicle, the battery will be used to supplement the solar arrays 
during peak load eonditions in sunlight. Periods of peak power 
demand are expected to be during X-band downlink passes when the 
HPA (High Power Amplifier) is on. Active power management will 
be done by the ground system to monitor and adjust power use. The 
battery also powers the spacecraft during eclipses. 
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VI. Batteries 
ST5 has a single flight battery which provides power for peak loads and during eclipses. Considered a new 

technology on the ST5 mission, the 7.5 Amp-hour Lithium-Ion battery has completed a successful flight 
qualification program. Lithium-Ion was the battery technology chosen due to its high energy density and promising 
performance. The ST5 battery is comprised of 12 Sony 18650 high reliability lithium ion cells. The cells are 
arranged in 6 strings of 2 series connected cells. The individual battery cells have an end-of-charge voltage of 
+42V each, with a capacity of about 1.25 amp-hours at a C15 discharge rate, to a voltage of +3.0V. The total 
battery voltage is +8.4V maximum and the total battery capacity is approximately 7.5 Amp-hours at a rate of Cl5. 
Figure 6 is a picture of the battery, with a one inch scale in the foreground. AEA Technology Space in England 
performed the battery detailed design, assembly and qualification testing. 

The ST5 lithium-ion battery provides for an increase in energy 
density of 2-3 times over nickel cadmium batteries, thus helping our 
mass and volume allocations. Along with the increase in energy 
density, this battery technology allows for a simplification in battery 
charge management circuitry. Constant current charging is no longer 
required and the voltage and temperature management is greatly 
simplified. In addition, the selection of low amp-hour cells in the 
battery has allowed for hrther reduction of battery charge control 
circuitry compared to that required for larger lithium-ion cells. As a 
standard practice, the AEA (Sony 18650) cells go through lot 
acceptance testing, where they have been matched for cell 
performance of a number of parameters. Only the screened and 
matched cells are used in the battery. Additionally, h e  lower amp 

hour size cells are arranged in multiple strings, each sharing 
a portion of the full battery current, rather than one single 

Figure 6: PhotogmPh of.sT5 L i t h i ~ ~ I o n  Battery string of cells taking the full charge and discharge current. 
In this ST5 arrangement, any individual cell imbalance will 

have less effect on the entire battery. Thus, the cell balancing electronics needed for larger cell sizes are not 
necessary for the ST5 cells. Here we are simply using battery level charge control measures. 

Another advantage of the battery cells selected for ST5 is the inherent safety features. There is built in 
overcharge protection in each cell which removes the cell fi-om charge under severely overcharged conditions. 
Having this mechanism internal to the cell alleviates the need for external electronics to bypass or clamp individual 
cells, and therefore simplifies the peripheral hardware tyhically associated with battery management of lithium ion 
cells. The reduction m the electronics area simplifies the design and testing and is consistent with our mass and 
volume constraints. 

VII. Conclusion 
In addition to designing and developing a new spacecraft architecture for three spacecraft, multiple new 

technologies had to progress through a space flight qualification program at the same time on ST5. Having gained 
flight qualification status while in development for ST5, these new technologies have cleared a hurdle for potential 
future use on larger scientific missions. The lessons learned fi-om the development and operation of a small 
constellation of satellites will be used on follow-on programs. 

The ST5 mission is currently progressing through the final stages of the test program. All of the components are 
currently integrated and operating on the spacecraft. The first of the three spacecraft has successfully completed all 
environmental testing. The remaining two spacecraft in the ST5 constellation are being tested in parallel and are 
progressing through spacecraft level environmental testing. The scheduled launch for ST5 is in February 2006. 
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